logo

Expression of type Lambda

from the theory of proveit.logic.sets.enumeration

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, x
from proveit.core_expr_types import y_1_to_n
from proveit.logic import Boolean, InSet, Set
In [2]:
# build up the expression from sub-expressions
expr = Lambda([x, y_1_to_n], InSet(InSet(x, Set(y_1_to_n)), Boolean))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \mapsto \left(\left(x \in \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right) \in \mathbb{B}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple8, 12
2Operationoperator: 6
operands: 3
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Literal
6Literal
7ExprTuple8, 9
8Variable
9Operationoperator: 10
operands: 11
10Literal
11ExprTuple12
12ExprRangelambda_map: 13
start_index: 14
end_index: 15
13Lambdaparameter: 19
body: 16
14Literal
15Variable
16IndexedVarvariable: 17
index: 19
17Variable
18ExprTuple19
19Variable