logo

Expression of type Conditional

from the theory of proveit.logic.sets.comprehension

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Q, f, n, x
from proveit.core_expr_types import Q__y_1_to_n, S_1_to_n, f__y_1_to_n, y_1_to_n
from proveit.logic import Equals, Exists, Forall, InSet
from proveit.logic.sets import general_comprehension_fyn
from proveit.numbers import NaturalPos
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Forall(instance_param_or_params = [S_1_to_n, Q, f, x], instance_expr = Equals(InSet(x, general_comprehension_fyn), Exists(instance_param_or_params = [y_1_to_n], instance_expr = Equals(x, f__y_1_to_n), domains = [S_1_to_n], condition = Q__y_1_to_n)).with_wrapping_at(1)), InSet(n, NaturalPos))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\forall_{S_{1}, S_{2}, \ldots, S_{n}, Q, f, x}~\left(\begin{array}{c} \begin{array}{l} \left(x \in \left\{f\left(y_{1}, y_{2}, \ldots, y_{n}\right)~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\}_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)}\right) \\  = \left[\exists_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)}~\left(x = f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)\right] \end{array} \end{array}\right) \textrm{ if } n \in \mathbb{N}^+\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operand: 6
2Operationoperator: 41
operands: 5
3Literal
4ExprTuple6
5ExprTuple45, 7
6Lambdaparameters: 8
body: 9
7Literal
8ExprTuple10, 37, 33, 29
9Operationoperator: 26
operands: 11
10ExprRangelambda_map: 12
start_index: 44
end_index: 45
11ExprTuple13, 14
12Lambdaparameter: 51
body: 46
13Operationoperator: 41
operands: 15
14Operationoperator: 16
operand: 19
15ExprTuple29, 18
16Literal
17ExprTuple19
18Operationoperator: 20
operand: 23
19Lambdaparameters: 38
body: 22
20Literal
21ExprTuple23
22Conditionalvalue: 24
condition: 28
23Lambdaparameters: 38
body: 25
24Operationoperator: 26
operands: 27
25Conditionalvalue: 30
condition: 28
26Literal
27ExprTuple29, 30
28Operationoperator: 31
operands: 32
29Variable
30Operationoperator: 33
operands: 38
31Literal
32ExprTuple34, 35
33Variable
34ExprRangelambda_map: 36
start_index: 44
end_index: 45
35Operationoperator: 37
operands: 38
36Lambdaparameter: 51
body: 39
37Variable
38ExprTuple40
39Operationoperator: 41
operands: 42
40ExprRangelambda_map: 43
start_index: 44
end_index: 45
41Literal
42ExprTuple47, 46
43Lambdaparameter: 51
body: 47
44Literal
45Variable
46IndexedVarvariable: 48
index: 51
47IndexedVarvariable: 49
index: 51
48Variable
49Variable
50ExprTuple51
51Variable