logo

Expression of type Equals

from the theory of proveit.logic.sets.comprehension

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import x
from proveit.core_expr_types import Q__y_1_to_n, S_1_to_n, f__y_1_to_n, y_1_to_n
from proveit.logic import Equals, Exists, InSet
from proveit.logic.sets import general_comprehension_fyn
In [2]:
# build up the expression from sub-expressions
expr = Equals(InSet(x, general_comprehension_fyn), Exists(instance_param_or_params = [y_1_to_n], instance_expr = Equals(x, f__y_1_to_n), domains = [S_1_to_n], condition = Q__y_1_to_n)).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(x \in \left\{f\left(y_{1}, y_{2}, \ldots, y_{n}\right)~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\}_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)}\right) \\  = \left[\exists_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)}~\left(x = f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)\right] \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 15
operands: 1
1ExprTuple2, 3
2Operationoperator: 30
operands: 4
3Operationoperator: 5
operand: 8
4ExprTuple18, 7
5Literal
6ExprTuple8
7Operationoperator: 9
operand: 12
8Lambdaparameters: 27
body: 11
9Literal
10ExprTuple12
11Conditionalvalue: 13
condition: 17
12Lambdaparameters: 27
body: 14
13Operationoperator: 15
operands: 16
14Conditionalvalue: 19
condition: 17
15Literal
16ExprTuple18, 19
17Operationoperator: 20
operands: 21
18Variable
19Operationoperator: 22
operands: 27
20Literal
21ExprTuple23, 24
22Variable
23ExprRangelambda_map: 25
start_index: 33
end_index: 34
24Operationoperator: 26
operands: 27
25Lambdaparameter: 40
body: 28
26Variable
27ExprTuple29
28Operationoperator: 30
operands: 31
29ExprRangelambda_map: 32
start_index: 33
end_index: 34
30Literal
31ExprTuple36, 35
32Lambdaparameter: 40
body: 36
33Literal
34Variable
35IndexedVarvariable: 37
index: 40
36IndexedVarvariable: 38
index: 40
37Variable
38Variable
39ExprTuple40
40Variable