logo

Expression of type Lambda

from the theory of proveit.logic.booleans.quantification.existence

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, P, Q, alpha, n
from proveit.core_expr_types import P__x_1_to_n, Q__x_1_to_n, x_1_to_n
from proveit.logic import And, Forall, Implies, InSet
from proveit.logic.booleans.quantification import general_exists_Py_st_Qy
from proveit.numbers import NaturalPos
In [2]:
# build up the expression from sub-expressions
expr = Lambda(n, Conditional(Forall(instance_param_or_params = [P, Q, alpha], instance_expr = Implies(And(general_exists_Py_st_Qy, Forall(instance_param_or_params = [x_1_to_n], instance_expr = Implies(P__x_1_to_n, alpha), condition = Q__x_1_to_n)), alpha)), InSet(n, NaturalPos)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
n \mapsto \left\{\forall_{P, Q, \alpha}~\left(\left(\left[\exists_{y_{1}, y_{2}, \ldots, y_{n}~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)}~P\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right] \land \left[\forall_{x_{1}, x_{2}, \ldots, x_{n}~|~Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}~\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \Rightarrow \alpha\right)\right]\right) \Rightarrow \alpha\right) \textrm{ if } n \in \mathbb{N}^+\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 45
body: 2
1ExprTuple45
2Conditionalvalue: 3
condition: 4
3Operationoperator: 20
operand: 8
4Operationoperator: 6
operands: 7
5ExprTuple8
6Literal
7ExprTuple45, 9
8Lambdaparameters: 10
body: 11
9Literal
10ExprTuple38, 33, 36
11Operationoperator: 31
operands: 12
12ExprTuple13, 36
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16, 17
16Operationoperator: 18
operand: 22
17Operationoperator: 20
operand: 23
18Literal
19ExprTuple22
20Literal
21ExprTuple23
22Lambdaparameters: 30
body: 24
23Lambdaparameters: 39
body: 25
24Conditionalvalue: 26
condition: 27
25Conditionalvalue: 28
condition: 29
26Operationoperator: 38
operands: 30
27Operationoperator: 33
operands: 30
28Operationoperator: 31
operands: 32
29Operationoperator: 33
operands: 39
30ExprTuple34
31Literal
32ExprTuple35, 36
33Variable
34ExprRangelambda_map: 37
start_index: 44
end_index: 45
35Operationoperator: 38
operands: 39
36Variable
37Lambdaparameter: 49
body: 40
38Variable
39ExprTuple41
40IndexedVarvariable: 42
index: 49
41ExprRangelambda_map: 43
start_index: 44
end_index: 45
42Variable
43Lambdaparameter: 49
body: 46
44Literal
45Variable
46IndexedVarvariable: 47
index: 49
47Variable
48ExprTuple49
49Variable