logo

Expression of type Implies

from the theory of proveit.logic.booleans.quantification.existence

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import alpha
from proveit.core_expr_types import P__x_1_to_n, Q__x_1_to_n, x_1_to_n
from proveit.logic import And, Forall, Implies
from proveit.logic.booleans.quantification import general_exists_Py_st_Qy
In [2]:
# build up the expression from sub-expressions
expr = Implies(And(general_exists_Py_st_Qy, Forall(instance_param_or_params = [x_1_to_n], instance_expr = Implies(P__x_1_to_n, alpha), condition = Q__x_1_to_n)), alpha)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left[\exists_{y_{1}, y_{2}, \ldots, y_{n}~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)}~P\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right] \land \left[\forall_{x_{1}, x_{2}, \ldots, x_{n}~|~Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}~\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \Rightarrow \alpha\right)\right]\right) \Rightarrow \alpha
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 20
operands: 1
1ExprTuple2, 25
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operand: 11
6Operationoperator: 9
operand: 12
7Literal
8ExprTuple11
9Literal
10ExprTuple12
11Lambdaparameters: 19
body: 13
12Lambdaparameters: 28
body: 14
13Conditionalvalue: 15
condition: 16
14Conditionalvalue: 17
condition: 18
15Operationoperator: 27
operands: 19
16Operationoperator: 22
operands: 19
17Operationoperator: 20
operands: 21
18Operationoperator: 22
operands: 28
19ExprTuple23
20Literal
21ExprTuple24, 25
22Variable
23ExprRangelambda_map: 26
start_index: 33
end_index: 34
24Operationoperator: 27
operands: 28
25Variable
26Lambdaparameter: 38
body: 29
27Variable
28ExprTuple30
29IndexedVarvariable: 31
index: 38
30ExprRangelambda_map: 32
start_index: 33
end_index: 34
31Variable
32Lambdaparameter: 38
body: 35
33Literal
34Variable
35IndexedVarvariable: 36
index: 38
36Variable
37ExprTuple38
38Variable