In [1]:
import proveit
from proveit.numbers import num
from proveit import A, B, m
from proveit.logic.booleans.disjunction  import multi_disjunction_def
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving unary_or_lemma
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
(see dependencies)
In [3]:
In [4]:
multi_disjunction_def.instantiate({m:num(0), A:(), B:A})
unary_or_lemma may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [5]:
proveit.logic.booleans.disjunction.unary_or_lemma has been proven.