logo
In [1]:
import proveit
from proveit.logic.booleans.conjunction  import and_t_t
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving true_and_true
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
true_and_true:
(see dependencies)
true_and_true has been proven.  Now simply execute "%qed".
In [3]:
%qed
proveit.logic.booleans.conjunction.true_and_true has been proven.
Out[3]:
 step typerequirementsstatement
0instantiation1, 2  ⊢  
  :
1axiom  ⊢  
 proveit.logic.booleans.eq_true_elim
2axiom  ⊢  
 proveit.logic.booleans.conjunction.and_t_t