logo
In [1]:
import proveit
from proveit import l, x, A
from proveit.numbers import two
from proveit.logic import bools_def, TRUE, FALSE
from proveit.logic.booleans import in_bool_def
from proveit.logic.sets.enumeration  import enum_set_def
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving in_bool_is_bool
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
in_bool_is_bool:
(see dependencies)
in_bool_is_bool may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [3]:
in_bool_def
In [4]:
in_bool_def_spec = in_bool_def.instantiate({A:A})
in_bool_def_spec:  ⊢  
In [5]:
in_bool_def_r_h_s_in_bool = in_bool_def_spec.rhs.deduce_in_bool()
in_bool_def_r_h_s_in_bool:  ⊢  
In [6]:
in_bool_def_spec.sub_left_side_into(in_bool_def_r_h_s_in_bool)
In [7]:
%qed
proveit.logic.booleans.in_bool_is_bool has been proven.
Out[7]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4  ⊢  
  : , : , :
2theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
3instantiation5, 6, 7  ⊢  
  : , :
4instantiation8  ⊢  
  :
5conjecture  ⊢  
 proveit.logic.booleans.disjunction.binary_closure
6instantiation9  ⊢  
  : , :
7instantiation9  ⊢  
  : , :
8conjecture  ⊢  
 proveit.logic.booleans.in_bool_def
9axiom  ⊢  
 proveit.logic.equality.equality_in_bool