logo

Proof of proveit.logic.booleans.in_bool_def theorem

In [1]:
import proveit
from proveit import l, x, A
from proveit.logic import bools_def, TRUE, FALSE, InSet
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving in_bool_def
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
in_bool_def:
(see dependencies)
In [3]:
bools_def
In [4]:
Ain_boolSet = InSet(A, bools_def.rhs)
Ain_boolSet:
In [5]:
in_bool_set_def = Ain_boolSet.definition()
in_bool_set_def:  ⊢  
In [6]:
bools_def.sub_left_side_into(in_bool_set_def)
in_bool_def may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [7]:
%qed
proveit.logic.booleans.in_bool_def has been proven.