logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import alpha, b
from proveit.core_expr_types import a_1_to_i, c_1_to_k
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals
In [2]:
# build up the expression from sub-expressions
expr = Equals(TensorProd(a_1_to_i, ScalarMult(alpha, b), c_1_to_k), ScalarMult(alpha, TensorProd(a_1_to_i, b, c_1_to_k))).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(\alpha \cdot b\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \\  = \left(\alpha \cdot \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 11
operands: 5
4Operationoperator: 9
operands: 6
5ExprTuple14, 7, 16
6ExprTuple13, 8
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 15
11Literal
12ExprTuple14, 15, 16
13Variable
14ExprRangelambda_map: 17
start_index: 20
end_index: 18
15Variable
16ExprRangelambda_map: 19
start_index: 20
end_index: 21
17Lambdaparameter: 27
body: 22
18Variable
19Lambdaparameter: 27
body: 23
20Literal
21Variable
22IndexedVarvariable: 24
index: 27
23IndexedVarvariable: 25
index: 27
24Variable
25Variable
26ExprTuple27
27Variable