| step type | requirements | statement |
0 | modus ponens | 1, 2 | , , , , , , ⊢ |
1 | instantiation | 7, 20, 19, 22, 21, 23, 3, 4, 27, 26, 28, 29 | , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
2 | modus ponens | 5, 6 | , , , , , , ⊢ |
3 | instantiation | 34 | ⊢ |
| : , : |
4 | instantiation | 34 | ⊢ |
| : , : |
5 | instantiation | 7, 19, 10, 21, 23, 26, 28, 27, 13*, 14* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
6 | modus ponens | 8, 9 | , , , , , , ⊢ |
7 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.insert_vec_on_both_sides_of_equality |
8 | instantiation | 18, 10, 19, 21, 23, 26, 28, 27, 11, 12, 13*, 14* | , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : , : |
9 | modus ponens | 15, 16 | , , , , , ⊢ |
10 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
11 | instantiation | 35 | ⊢ |
| : |
12 | assumption | | ⊢ |
13 | instantiation | 17, 23, 26 | ⊢ |
| : , : , : |
14 | instantiation | 17, 23, 28 | ⊢ |
| : , : , : |
15 | instantiation | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : , : |
16 | assumption | | ⊢ |
17 | axiom | | ⊢ |
| proveit.linear_algebra.tensors.unary_tensor_prod_def |
18 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.remove_vec_on_both_sides_of_equality |
19 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
21 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
22 | instantiation | 34 | ⊢ |
| : , : |
23 | instantiation | 32, 33 | ⊢ |
| : |
24 | instantiation | 34 | ⊢ |
| : , : |
25 | instantiation | 34 | ⊢ |
| : , : |
26 | assumption | | ⊢ |
27 | assumption | | ⊢ |
28 | assumption | | ⊢ |
29 | assumption | | ⊢ |
30 | instantiation | 35 | ⊢ |
| : |
31 | assumption | | ⊢ |
32 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
35 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
*equality replacement requirements |