logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0modus ponens1, 2, , , , , ,  ⊢  
1instantiation7, 20, 19, 22, 21, 23, 3, 4, 27, 26, 28, 29, , ,  ⊢  
  : , : , : , : , : , : , : , : , : , : , :
2modus ponens5, 6, , , , , ,  ⊢  
3instantiation34  ⊢  
  : , :
4instantiation34  ⊢  
  : , :
5instantiation7, 19, 10, 21, 23, 26, 28, 27, 13*, 14*, ,  ⊢  
  : , : , : , : , : , : , : , : , : , : , :
6modus ponens8, 9, , , , , ,  ⊢  
7theorem  ⊢  
 proveit.linear_algebra.tensors.insert_vec_on_both_sides_of_equality
8instantiation18, 10, 19, 21, 23, 26, 28, 27, 11, 12, 13*, 14*, , ,  ⊢  
  : , : , : , : , : , : , : , : , : , : , : , :
9modus ponens15, 16, , , , ,  ⊢  
10theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
11instantiation35  ⊢  
  :
12assumption  ⊢  
13instantiation17, 23, 26  ⊢  
  : , : , :
14instantiation17, 23, 28  ⊢  
  : , : , :
15instantiation18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, , , ,  ⊢  
  : , : , : , : , : , : , : , : , : , : , : , :
16assumption  ⊢  
17axiom  ⊢  
 proveit.linear_algebra.tensors.unary_tensor_prod_def
18theorem  ⊢  
 proveit.linear_algebra.tensors.remove_vec_on_both_sides_of_equality
19axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
20theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
21theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
22instantiation34  ⊢  
  : , :
23instantiation32, 33  ⊢  
  :
24instantiation34  ⊢  
  : , :
25instantiation34  ⊢  
  : , :
26assumption  ⊢  
27assumption  ⊢  
28assumption  ⊢  
29assumption  ⊢  
30instantiation35  ⊢  
  :
31assumption  ⊢  
32theorem  ⊢  
 proveit.linear_algebra.real_vec_set_is_vec_space
33theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
34theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
35axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
*equality replacement requirements