| | step type | requirements | statement |
| 0 | modus ponens | 1, 2 | , , , , , , ⊢  |
| 1 | instantiation | 3, 15, 6, 17, 19, 22, 24, 23, 9*, 10* | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 2 | modus ponens | 4, 5 | , , , , , , ⊢  |
| 3 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.insert_vec_on_both_sides_of_equality |
| 4 | instantiation | 14, 6, 15, 17, 19, 22, 24, 23, 7, 8, 9*, 10* | , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , : , : , :  |
| 5 | modus ponens | 11, 12 | , , , , , ⊢  |
| 6 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 7 | instantiation | 31 | ⊢  |
| | :  |
| 8 | assumption | | ⊢  |
| 9 | instantiation | 13, 19, 22 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 13, 19, 24 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , : , : , :  |
| 12 | assumption | | ⊢  |
| 13 | axiom | | ⊢  |
| | proveit.linear_algebra.tensors.unary_tensor_prod_def |
| 14 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.remove_vec_on_both_sides_of_equality |
| 15 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 16 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 17 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 18 | instantiation | 30 | ⊢  |
| | : , :  |
| 19 | instantiation | 28, 29 | ⊢  |
| | :  |
| 20 | instantiation | 30 | ⊢  |
| | : , :  |
| 21 | instantiation | 30 | ⊢  |
| | : , :  |
| 22 | assumption | | ⊢  |
| 23 | assumption | | ⊢  |
| 24 | assumption | | ⊢  |
| 25 | assumption | | ⊢  |
| 26 | instantiation | 31 | ⊢  |
| | :  |
| 27 | assumption | | ⊢  |
| 28 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 31 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| *equality replacement requirements |