| step type | requirements | statement |
0 | modus ponens | 1, 2 | , , , , , , ⊢ |
1 | instantiation | 3, 15, 6, 17, 19, 22, 24, 23, 9*, 10* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
2 | modus ponens | 4, 5 | , , , , , , ⊢ |
3 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.insert_vec_on_both_sides_of_equality |
4 | instantiation | 14, 6, 15, 17, 19, 22, 24, 23, 7, 8, 9*, 10* | , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : , : |
5 | modus ponens | 11, 12 | , , , , , ⊢ |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
7 | instantiation | 31 | ⊢ |
| : |
8 | assumption | | ⊢ |
9 | instantiation | 13, 19, 22 | ⊢ |
| : , : , : |
10 | instantiation | 13, 19, 24 | ⊢ |
| : , : , : |
11 | instantiation | 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : , : , : |
12 | assumption | | ⊢ |
13 | axiom | | ⊢ |
| proveit.linear_algebra.tensors.unary_tensor_prod_def |
14 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.remove_vec_on_both_sides_of_equality |
15 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
16 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
17 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
18 | instantiation | 30 | ⊢ |
| : , : |
19 | instantiation | 28, 29 | ⊢ |
| : |
20 | instantiation | 30 | ⊢ |
| : , : |
21 | instantiation | 30 | ⊢ |
| : , : |
22 | assumption | | ⊢ |
23 | assumption | | ⊢ |
24 | assumption | | ⊢ |
25 | assumption | | ⊢ |
26 | instantiation | 31 | ⊢ |
| : |
27 | assumption | | ⊢ |
28 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
31 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
*equality replacement requirements |