logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import CartExp, Equals, InSet
from proveit.numbers import Add, Interval, Mult, Real, four, one, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = TensorProd(x, y)
sub_expr3 = Interval(two, four)
sub_expr4 = CartExp(Real, three)
sub_expr5 = Mult(gamma, beta)
sub_expr6 = Mult(i, Add(i, one))
sub_expr7 = VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr6, sub_expr2), domain = sub_expr3)
expr = ExprTuple(InSet(sub_expr7, TensorProd(sub_expr4, sub_expr4)), Equals(ScalarMult(sub_expr5, sub_expr7), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(sub_expr5, sub_expr6), sub_expr2), domain = sub_expr3)).with_wrapping_at(1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right), \begin{array}{c} \begin{array}{l} \left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(\left(i \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right)\right) \\  = \left(\sum_{i=2}^{4} \left(\left(\left(\gamma \cdot \beta\right) \cdot \left(i \cdot \left(i + 1\right)\right)\right) \cdot \left(x {\otimes} y\right)\right)\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 32
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple13, 6
4Literal
5ExprTuple7, 8
6Operationoperator: 39
operands: 9
7Operationoperator: 30
operands: 10
8Operationoperator: 17
operand: 14
9ExprTuple12, 12
10ExprTuple37, 13
11ExprTuple14
12Operationoperator: 15
operands: 16
13Operationoperator: 17
operand: 22
14Lambdaparameter: 55
body: 19
15Literal
16ExprTuple20, 21
17Literal
18ExprTuple22
19Conditionalvalue: 23
condition: 28
20Literal
21Literal
22Lambdaparameter: 55
body: 25
23Operationoperator: 30
operands: 26
24ExprTuple55
25Conditionalvalue: 27
condition: 28
26ExprTuple29, 35
27Operationoperator: 30
operands: 31
28Operationoperator: 32
operands: 33
29Operationoperator: 44
operands: 34
30Literal
31ExprTuple38, 35
32Literal
33ExprTuple55, 36
34ExprTuple37, 38
35Operationoperator: 39
operands: 40
36Operationoperator: 41
operands: 42
37Operationoperator: 44
operands: 43
38Operationoperator: 44
operands: 45
39Literal
40ExprTuple46, 47
41Literal
42ExprTuple48, 49
43ExprTuple50, 51
44Literal
45ExprTuple55, 52
46Variable
47Variable
48Literal
49Literal
50Variable
51Variable
52Operationoperator: 53
operands: 54
53Literal
54ExprTuple55, 56
55Variable
56Literal