logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, fi, gamma, i, x, y, z
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import CartExp, Equals, Forall, InSet
from proveit.numbers import Interval, Real, four, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = CartExp(Real, three)
sub_expr3 = Interval(two, four)
sub_expr4 = TensorProd(y, fi)
sub_expr5 = ScalarMult(gamma, sub_expr4)
expr = ExprTuple(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(TensorProd(x, sub_expr5, z), TensorProd(sub_expr2, sub_expr2, sub_expr2, sub_expr2)), domain = sub_expr3), Equals(TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = sub_expr5, domain = sub_expr3), z), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(gamma, TensorProd(x, sub_expr4, z)), domain = sub_expr3)).with_wrapping_at(1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\forall_{i \in \{2~\ldotp \ldotp~4\}}~\left(\left(x {\otimes} \left(\gamma \cdot \left(y {\otimes} f\left(i\right)\right)\right) {\otimes} z\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3} {\otimes} \mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right)\right), \begin{array}{c} \begin{array}{l} \left(x {\otimes} \left(\sum_{i=2}^{4} \left(\gamma \cdot \left(y {\otimes} f\left(i\right)\right)\right)\right) {\otimes} z\right) \\  = \left(\sum_{i=2}^{4} \left(\gamma \cdot \left(x {\otimes} \left(y {\otimes} f\left(i\right)\right) {\otimes} z\right)\right)\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 7
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7
5Literal
6ExprTuple8, 9
7Lambdaparameter: 56
body: 10
8Operationoperator: 48
operands: 11
9Operationoperator: 17
operand: 15
10Conditionalvalue: 13
condition: 30
11ExprTuple43, 14, 45
12ExprTuple15
13Operationoperator: 36
operands: 16
14Operationoperator: 17
operand: 22
15Lambdaparameter: 56
body: 19
16ExprTuple20, 21
17Literal
18ExprTuple22
19Conditionalvalue: 23
condition: 30
20Operationoperator: 48
operands: 24
21Operationoperator: 48
operands: 25
22Lambdaparameter: 56
body: 26
23Operationoperator: 34
operands: 27
24ExprTuple43, 29, 45
25ExprTuple28, 28, 28, 28
26Conditionalvalue: 29
condition: 30
27ExprTuple41, 31
28Operationoperator: 32
operands: 33
29Operationoperator: 34
operands: 35
30Operationoperator: 36
operands: 37
31Operationoperator: 48
operands: 38
32Literal
33ExprTuple39, 40
34Literal
35ExprTuple41, 44
36Literal
37ExprTuple56, 42
38ExprTuple43, 44, 45
39Literal
40Literal
41Variable
42Operationoperator: 46
operands: 47
43Variable
44Operationoperator: 48
operands: 49
45Variable
46Literal
47ExprTuple50, 51
48Literal
49ExprTuple52, 53
50Literal
51Literal
52Variable
53Operationoperator: 54
operand: 56
54Variable
55ExprTuple56
56Variable