logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, fi, gamma, i, x, y, z
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
sub_expr3 = TensorProd(y, fi)
expr = ExprTuple(TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(gamma, sub_expr3), domain = sub_expr2), z), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(gamma, TensorProd(x, sub_expr3, z)), domain = sub_expr2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x {\otimes} \left(\sum_{i=2}^{4} \left(\gamma \cdot \left(y {\otimes} f\left(i\right)\right)\right)\right) {\otimes} z, \sum_{i=2}^{4} \left(\gamma \cdot \left(x {\otimes} \left(y {\otimes} f\left(i\right)\right) {\otimes} z\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 29
operands: 3
2Operationoperator: 7
operand: 6
3ExprTuple24, 5, 26
4ExprTuple6
5Operationoperator: 7
operand: 10
6Lambdaparameter: 37
body: 9
7Literal
8ExprTuple10
9Conditionalvalue: 11
condition: 15
10Lambdaparameter: 37
body: 12
11Operationoperator: 17
operands: 13
12Conditionalvalue: 14
condition: 15
13ExprTuple22, 16
14Operationoperator: 17
operands: 18
15Operationoperator: 19
operands: 20
16Operationoperator: 29
operands: 21
17Literal
18ExprTuple22, 25
19Literal
20ExprTuple37, 23
21ExprTuple24, 25, 26
22Variable
23Operationoperator: 27
operands: 28
24Variable
25Operationoperator: 29
operands: 30
26Variable
27Literal
28ExprTuple31, 32
29Literal
30ExprTuple33, 34
31Literal
32Literal
33Variable
34Operationoperator: 35
operand: 37
35Variable
36ExprTuple37
37Variable