logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Add(i, one)
sub_expr3 = TensorProd(x, y)
sub_expr4 = Interval(two, four)
expr = ExprTuple(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(gamma, i, beta, sub_expr2), sub_expr3), domain = sub_expr4), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(Mult(gamma, beta), Mult(i, sub_expr2)), sub_expr3), domain = sub_expr4))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right), \sum_{i=2}^{4} \left(\left(\left(\gamma \cdot \beta\right) \cdot \left(i \cdot \left(i + 1\right)\right)\right) \cdot \left(x {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operand: 6
2Operationoperator: 4
operand: 7
3ExprTuple6
4Literal
5ExprTuple7
6Lambdaparameter: 43
body: 8
7Lambdaparameter: 43
body: 10
8Conditionalvalue: 11
condition: 13
9ExprTuple43
10Conditionalvalue: 12
condition: 13
11Operationoperator: 15
operands: 14
12Operationoperator: 15
operands: 16
13Operationoperator: 17
operands: 18
14ExprTuple19, 21
15Literal
16ExprTuple20, 21
17Literal
18ExprTuple43, 22
19Operationoperator: 36
operands: 23
20Operationoperator: 36
operands: 24
21Operationoperator: 25
operands: 26
22Operationoperator: 27
operands: 28
23ExprTuple38, 43, 39, 40
24ExprTuple29, 30
25Literal
26ExprTuple31, 32
27Literal
28ExprTuple33, 34
29Operationoperator: 36
operands: 35
30Operationoperator: 36
operands: 37
31Variable
32Variable
33Literal
34Literal
35ExprTuple38, 39
36Literal
37ExprTuple43, 40
38Variable
39Variable
40Operationoperator: 41
operands: 42
41Literal
42ExprTuple43, 44
43Variable
44Literal