logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, i, x, y
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(VecSum(index_or_indices = [i], summand = x, domain = Interval(two, four)), ScalarMult(beta, y))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} x, \beta \cdot y\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 7
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7
5Literal
6ExprTuple8, 9
7Lambdaparameter: 16
body: 11
8Variable
9Variable
10ExprTuple16
11Conditionalvalue: 12
condition: 13
12Variable
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16, 17
16Variable
17Operationoperator: 18
operands: 19
18Literal
19ExprTuple20, 21
20Literal
21Literal