logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Lambda, alpha, x, y
from proveit.linear_algebra import ScalarMult
from proveit.logic import Equals, Forall
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(alpha, Forall(instance_param_or_params = [x, y], instance_expr = Equals(ScalarMult(alpha, x), ScalarMult(alpha, y)), condition = Equals(x, y))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\alpha \mapsto \left[\forall_{x, y~|~x = y}~\left(\left(\alpha \cdot x\right) = \left(\alpha \cdot y\right)\right)\right]\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 19
body: 3
2ExprTuple19
3Operationoperator: 4
operand: 6
4Literal
5ExprTuple6
6Lambdaparameters: 12
body: 7
7Conditionalvalue: 8
condition: 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 14
11Literal
12ExprTuple18, 20
13Operationoperator: 16
operands: 15
14Operationoperator: 16
operands: 17
15ExprTuple19, 18
16Literal
17ExprTuple19, 20
18Variable
19Variable
20Variable