logo

Expression of type Lambda

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, alpha, x, y
from proveit.linear_algebra import ScalarMult
from proveit.logic import Equals, Forall
In [2]:
# build up the expression from sub-expressions
expr = Lambda(alpha, Forall(instance_param_or_params = [x, y], instance_expr = Equals(ScalarMult(alpha, x), ScalarMult(alpha, y)), condition = Equals(x, y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\alpha \mapsto \left[\forall_{x, y~|~x = y}~\left(\left(\alpha \cdot x\right) = \left(\alpha \cdot y\right)\right)\right]
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 18
body: 2
1ExprTuple18
2Operationoperator: 3
operand: 5
3Literal
4ExprTuple5
5Lambdaparameters: 11
body: 6
6Conditionalvalue: 7
condition: 8
7Operationoperator: 10
operands: 9
8Operationoperator: 10
operands: 11
9ExprTuple12, 13
10Literal
11ExprTuple17, 19
12Operationoperator: 15
operands: 14
13Operationoperator: 15
operands: 16
14ExprTuple18, 17
15Literal
16ExprTuple18, 19
17Variable
18Variable
19Variable