logo

Expression of type Lambda

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import K, Lambda, Q, V, f
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import VecSpaces
from proveit.linear_algebra.addition import vec_summation_b1toj_fQ
from proveit.logic import Forall, Implies, InSet
In [2]:
# build up the expression from sub-expressions
expr = Lambda([K, f, Q], Forall(instance_param_or_params = [V], instance_expr = Implies(Forall(instance_param_or_params = [b_1_to_j], instance_expr = InSet(f__b_1_to_j, V), condition = Q__b_1_to_j), InSet(vec_summation_b1toj_fQ, V)).with_wrapping_at(2), domain = VecSpaces(K)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(K, f, Q\right) \mapsto \left[\forall_{V \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\left(\begin{array}{c} \begin{array}{l} \left[\forall_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(f\left(b_{1}, b_{2}, \ldots, b_{j}\right) \in V\right)\right] \Rightarrow  \\ \left(\left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right] \in V\right) \end{array} \end{array}\right)\right]
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple23, 35, 36
2Operationoperator: 16
operand: 4
3ExprTuple4
4Lambdaparameter: 32
body: 6
5ExprTuple32
6Conditionalvalue: 7
condition: 8
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 14
11Literal
12ExprTuple32, 15
13Operationoperator: 16
operand: 21
14Operationoperator: 29
operands: 18
15Operationoperator: 19
operand: 23
16Literal
17ExprTuple21
18ExprTuple22, 32
19Literal
20ExprTuple23
21Lambdaparameters: 37
body: 24
22Operationoperator: 25
operand: 28
23Variable
24Conditionalvalue: 27
condition: 34
25Literal
26ExprTuple28
27Operationoperator: 29
operands: 30
28Lambdaparameters: 37
body: 31
29Literal
30ExprTuple33, 32
31Conditionalvalue: 33
condition: 34
32Variable
33Operationoperator: 35
operands: 37
34Operationoperator: 36
operands: 37
35Variable
36Variable
37ExprTuple38
38ExprRangelambda_map: 39
start_index: 40
end_index: 41
39Lambdaparameter: 45
body: 42
40Literal
41Variable
42IndexedVarvariable: 43
index: 45
43Variable
44ExprTuple45
45Variable