logo

Expression of type Implies

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import V
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra.addition import vec_summation_b1toj_fQ
from proveit.logic import Forall, Implies, InSet
In [2]:
# build up the expression from sub-expressions
expr = Implies(Forall(instance_param_or_params = [b_1_to_j], instance_expr = InSet(f__b_1_to_j, V), condition = Q__b_1_to_j), InSet(vec_summation_b1toj_fQ, V)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[\forall_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(f\left(b_{1}, b_{2}, \ldots, b_{j}\right) \in V\right)\right] \Rightarrow  \\ \left(\left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right] \in V\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 8
4Operationoperator: 15
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 18
8Lambdaparameters: 23
body: 10
9Operationoperator: 11
operand: 14
10Conditionalvalue: 13
condition: 20
11Literal
12ExprTuple14
13Operationoperator: 15
operands: 16
14Lambdaparameters: 23
body: 17
15Literal
16ExprTuple19, 18
17Conditionalvalue: 19
condition: 20
18Variable
19Operationoperator: 21
operands: 23
20Operationoperator: 22
operands: 23
21Variable
22Variable
23ExprTuple24
24ExprRangelambda_map: 25
start_index: 26
end_index: 27
25Lambdaparameter: 31
body: 28
26Literal
27Variable
28IndexedVarvariable: 29
index: 31
29Variable
30ExprTuple31
31Variable