Source code for wecopttool.waves

"""Provide the wave definition structure and provide
functions for creating different common types of waves.

This module provides the (empty) data structure for waves in
:python:`wecopttool`.
It also provides functions for creating common types of waves such as
regular waves and irregular waves.
The data structure is a 2D complex :py:class:`xarray.DataArray`
containing the complex amplitude.
The 2D coordinates are: wave angular frequency :python:`omega` (rad/s)
and direction :python:`wave_direction` (rad).

This module uses wave spectrum data in the
:py:class:`wavespectra.SpecArray` format, but does not require that you
use :py:class:`wavespectra.SpecArray` objects.
"""


from __future__ import annotations


__all__ = [
    "elevation_fd",
    "regular_wave",
    "long_crested_wave",
    "irregular_wave",
    "random_phase",
    "omnidirectional_spectrum",
    "spectrum",
    "pierson_moskowitz_spectrum",  # TODO: Remove all below after wavespectra
    "jonswap_spectrum",
    "spread_cos2s",
    "general_spectrum",
    "pierson_moskowitz_params",
]


import logging
from typing import Callable, Mapping, Union, Optional, Iterable

import numpy as np
from numpy.typing import ArrayLike
from numpy import ndarray
from xarray import DataArray
from scipy.special import gamma

from wecopttool.core import frequency, degrees_to_radians, frequency_parameters


# logger
_log = logging.getLogger(__name__)


[docs] def elevation_fd( f1: float, nfreq: int, directions: Union[float, ArrayLike], nrealizations: int, amplitudes: Optional[ArrayLike] = None, phases: Optional[ArrayLike] = None, attr: Optional[Mapping] = None, seed: Optional[float] = None, ) -> DataArray: """Construct the complex wave elevation :py:class:`xarray.DataArray`. This is the complex wave elevation (m) indexed by radial frequency (rad/s) and wave direction (rad). The coordinate units and names match those from *Capytaine*. Parameters ---------- f1 Fundamental frequency :python:`f1` [Hz]. nfreq Number of frequencies (not including zero frequency), i.e., :python:`freq = [0, f1, 2*f1, ..., nfreq*f1]`. directions Wave directions in degrees. 1D array. nrealizations Number of wave phase realizations. amplitudes: Wave elevation amplitude in meters. phases: Wave phases in degrees. attr: Additional attributes (metadata) to include in the :py:class:`xarray.DataArray`. seed Seed for random number generator. Used for reproducibility. Generally should not be used except for testing. """ directions = np.atleast_1d(degrees_to_radians(directions, sort=False)) ndirections = len(directions) realization = range(nrealizations) freq = frequency(f1, nfreq, False) omega = freq*2*np.pi dims = ('omega', 'wave_direction', 'realization') omega_attr = {'long_name': 'Radial frequency', 'units': 'rad/s'} freq_attr = {'long_name': 'Frequency', 'units': 'Hz'} dir_attr = {'long_name': 'Wave direction', 'units': 'rad'} real_attr = {'long_name': 'Phase realization', 'units': ''} coords = {'omega': (dims[0], omega, omega_attr), 'freq': (dims[0], freq, freq_attr), 'wave_direction': (dims[1], directions, dir_attr), 'realization': (dims[2], realization, real_attr)} if amplitudes is None: amplitudes = np.zeros([nfreq, ndirections, nrealizations]) else: if amplitudes.shape == (nfreq, ndirections): amplitudes = np.expand_dims(amplitudes,axis=2) assert amplitudes.shape == (nfreq, ndirections, 1) or \ amplitudes.shape == (nfreq, ndirections, nrealizations) if phases is None: phases = random_phase([nfreq, ndirections, nrealizations], seed) else: phases = degrees_to_radians(phases, False) assert phases.shape == (nfreq, ndirections, nrealizations) camplitude = amplitudes * np.exp(1j*phases) attr = {} if attr is None else attr attrs = {'units': 'm', 'long_name': 'Wave elevation'} | attr waves = DataArray(camplitude, dims=dims, coords=coords, attrs=attrs, name='wave_elev') return waves.sortby(waves.wave_direction)
[docs] def regular_wave( f1: float, nfreq: int, freq: float, amplitude: float, phase: Optional[float] = None, direction: float = 0.0, ) -> DataArray: """Create the dataset for a regular wave. Parameters ---------- f1 Fundamental frequency :python:`f1` [Hz]. nfreq Number of frequencies (not including zero frequency), i.e., :python:`freq = [0, f1, 2*f1, ..., nfreq*f1]`. freq Frequency (in Hz) of the regular wave. If :python:`freq` is not in the frequency array, the closest value is used and a warning is displayed. amplitude Amplitude (in meters) of the regular wave. phase Phase (in degrees) of the regular wave. direction Direction (in degrees) of the regular wave. """ # attributes & index omega = freq*2*np.pi tmp_waves = elevation_fd(f1, nfreq, direction, 1) iomega = tmp_waves.sel(omega=omega, method='nearest').omega.values ifreq = iomega/(2*np.pi) if not np.isclose(iomega, omega): _log.warning( f"Requested frequency {freq} Hz is not in array. " + f"Using nearest value of {ifreq} Hz." ) attrs = { 'Wave type': 'Regular', 'Frequency (Hz)': ifreq, 'Amplitude (m)': amplitude, 'Phase (degrees)': phase, 'Direction (degrees)': direction, } # phase if phase is None: rphase = random_phase() phase = np.degrees(rphase) else: rphase = degrees_to_radians(phase) # wave elevation tmp = np.zeros([nfreq, 1, 1]) waves = elevation_fd(f1, nfreq, direction, 1, tmp, tmp, attrs) waves.loc[{'omega': iomega}] = amplitude * np.exp(1j*rphase) return waves
[docs] def long_crested_wave( efth: DataArray, nrealizations: int, direction: Optional[float] = 0.0, seed: Optional[float] = None, ) -> DataArray: """Create a complex frequency-domain wave elevation from an omnidirectional spectrum. The spectrum is a :py:class:`xarray.DataArray` in the format used by :py:class:`wavespectra.SpecArray`. .. note:: The frequencies must be evenly-spaced with spacing equal to the first frequency. This is not always the case when e.g. reading from buoy data. Use interpolation as :python:`da.interp(freq=[...])`. Parameters ---------- efth Omnidirection wave spectrum in units of m^2/Hz, in the format used by :py:class:`wavespectra.SpecArray`. nrealizations Number of wave phase realizations to be created for the long-crested wave. direction Direction (in degrees) of the long-crested wave. seed Seed for random number generator. Used for reproducibility. Generally should not be used except for testing. """ f1, nfreq = frequency_parameters(efth.freq.values, False) df = f1 values = efth.values values[values<0] = np.nan amplitudes = np.sqrt(2 * values * df) attr = { 'Wave type': 'Long-crested irregular', 'Direction (degrees)': direction, } return elevation_fd(f1, nfreq, direction, nrealizations, amplitudes, None, attr, seed)
[docs] def irregular_wave(efth: DataArray, nrealizations: int, seed: Optional[float] = None,) -> DataArray: """Create a complex frequency-domain wave elevation from a spectrum. The spectrum is a :py:class:`xarray.DataArray` in the format used by :py:class:`wavespectra.SpecArray`. .. note:: The frequencies must be evenly-spaced with spacing equal to the first frequency. This is not always the case when e.g. reading from buoy data. Use interpolation as :python:`da.interp(freq=[...])`. .. note:: The wave directions must also be evenly spaced. Parameters ---------- efth Wave spectrum in units of m^2/Hz/deg, in the format used by :py:class:`wavespectra.SpecArray`. nrealizations Number of wave phase realizations to be created for the irregular wave. seed Seed for random number generator. Used for reproducibility. Generally should not be used except for testing. """ f1, nfreq = frequency_parameters(efth.freq.values, False) directions = efth.dir.values df = f1 dd = np.sort(directions)[1]-np.sort(directions)[0] values = efth.values values[values<0] = np.nan amplitudes = np.sqrt(2 * values * df * dd) attr = {'Wave type': 'Irregular'} return elevation_fd(f1, nfreq, directions, nrealizations, amplitudes, None, attr, seed)
[docs] def random_phase( shape: Optional[Union[Iterable[int], int, int]] = None, seed: Optional[float] = None, ) -> Union[float , ndarray]: """Generate random phases in range [-π, π) radians. Parameters ---------- shape Shape of the output array of random phases. seed Seed for random number generator. Used for reproducibility. Generally should not be used except for testing. """ rng = np.random.default_rng(seed) return rng.random(shape)*2*np.pi - np.pi
# TODO: Move everything below to wavespectra.construct # wavespectra is good at reading from simulations or measurements # but not good yet at constructing from parametric models.
[docs] def omnidirectional_spectrum( f1: float, nfreq: int, spectrum_func: Callable, spectrum_name: str = '', ) -> DataArray: """Create the :py:class:`xarray.DataArray` for an omnidirectional wave spectrum in the :py:class:`wavespectra.SpecArray` format. Examples -------- Define wave parameters. >>> from wecopttool.waves import omnidirectional_spectrum as omnispec >>> from wecopttool.waves import pierson_moskowitz_spectrum as pm >>> Hs = 5 >>> Tp = 6 >>> fp = 1/Tp Generate the wave using a Pierson-Moskowitz idealized spectrum. >>> omnidirectional_spectrum = omnispec( ... f1=fp/10, ... nfreq=30, ... spectrum_func=lambda f: pm(freq=f, fp=fp, hs=Hs), ... spectrum_name="Pierson-Moskowitz", ... ) Parameters ---------- f1 Fundamental frequency :python:`f1` [Hz]. nfreq Number of frequencies (not including zero frequency), i.e., :python:`freq = [0, f1, 2*f1, ..., nfreq*f1]`. spectrum_func Wave spectrum function. Maps frequencies to amplitude spectrum. :python:`Union[float, ArrayLike] -> Union[float, ndarray]`. Units: :math:`m^2/Hz`. spectrum_name Name of the spectrum function. """ # dimensions & coordinates freq = frequency(f1, nfreq, False) dims = ('freq', 'dir') freq_attr = { 'long_name': 'wave frequency', 'units': 'Hz' } dir_attr = { 'long_name': 'wave direction', 'units': 'deg' } dir = [0.0,] coords = [(dims[0], freq, freq_attr), (dims[1], dir, dir_attr)] # spectrum efth = spectrum_func(freq).reshape(nfreq, 1) efth_attr = { 'long_name': 'omnidirectional spectrum', 'units': 'm^2/Hz', 'Omnidirectional Spectrum': spectrum_name, } return DataArray(efth, dims=dims, coords=coords, attrs=efth_attr)
[docs] def spectrum( f1: float, nfreq: int, directions: Union[float, ArrayLike], spectrum_func: Callable, spread_func: Callable, spectrum_name: str = '', spread_name: str = '', ) -> DataArray: """Create the :py:class:`xarray.DataArray` for an irregular wave in the :py:class:`wavespectra.SpecArray` format. Examples -------- Define the desired spectrum parameters. >>> import wecopttool as wot >>> import numpy as np >>> Hs = 5 >>> Tp = 6 >>> fp = 1/Tp >>> directions = np.linspace(0, 360, 36, endpoint=False) Create a function handle to define the spectral density, >>> def spectrum_func(f): ... return wot.waves.pierson_moskowitz_spectrum(freq=f, ... fp=fp, ... hs=Hs) and a spreading function handle for spreading. >>> def spread_func(f, d): ... return wot.waves.spread_cos2s(freq=f, ... directions=d, ... dm=10, ... fp=fp, ... s_max=10) Generate the spectrum. >>> wave = wot.waves.spectrum(f1=fp/10, ... nfreq=20, ... directions=directions, ... spectrum_func=spectrum_func, ... spread_func=spread_func, ... spectrum_name="Pierson-Moskowitz", ... spread_name="cosine-2s",) Parameters ---------- f1 Fundamental frequency :python:`f1` [Hz]. nfreq Number of frequencies (not including zero frequency), i.e., :python:`freq = [0, f1, 2*f1, ..., nfreq*f1]`. directions Wave directions in degrees. 1D array, evenly spaced. spectrum_func Wave spectrum function. Maps frequencies to amplitude spectrum. :python:`Union[float, ArrayLike] -> Union[float, np.ndarray]`. Units: :math:`m^2/Hz`. spread_func Wave spreading function. Maps wave frequencies and directions to spread value. :python:`tuple[ Union[float, ArrayLike], Union[float, ArrayLike]] -> ndarray`. Units: :math:`1/degree`. spectrum_name Name of the spectrum function. spread_name Name of the spread function. """ # dimensions & coordinates freq = frequency(f1, nfreq, False) dims = ('freq', 'dir') freq_attr = { 'long_name': 'wave frequency', 'units': 'Hz' } dir_attr = { 'long_name': 'wave direction', 'units': 'deg' } dir = directions coords = [(dims[0], freq, freq_attr), (dims[1], dir, dir_attr)] # spectrum efth = spectrum_func(freq).reshape(nfreq, 1) * spread_func(freq, dir) efth_attr = { 'long_name': 'spectrum', 'units': 'm^2/Hz/deg', 'Omnidirectional Spectrum': spectrum_name, 'Spreading function': spread_name, } return DataArray(efth, dims=dims, coords=coords, attrs=efth_attr)
[docs] def pierson_moskowitz_spectrum( freq: Union[float, ArrayLike], fp: float, hs: float, ) -> Union[float, ndarray]: """Calculate the Pierson-Moskowitz omni-directional wave spectrum for the specified frequencies and parameters. This is included as one example of a spectrum function. Return is in units of :math:`m^2/Hz`. Parameters ---------- freq Wave frequencies. fp Peak frequency of the sea-state in :math:`Hz`. hs Significant wave height of the sea-state in :math:`m`. """ a_param, b_param = pierson_moskowitz_params(fp, hs) return general_spectrum(a_param, b_param, freq)
[docs] def jonswap_spectrum( freq: Union[float, ArrayLike], fp: float, hs: float, gamma: float = 3.3, ) -> Union[float, ndarray]: """Calculate the Joint North Sea Wave Project (JONSWAP) omni-directional wave spectrum for the specified frequencies and parameters. See, e.g., :title:`DNV-RP-C205` For :python:`gamma = 1`, the JONSWAP spectrum reduces to a Pierson-Moskowitz spectrum. Return is in units of :math:`m^2/Hz`. Parameters ---------- freq Wave frequencies in :math:`Hz`. fp Peak frequency in :math:`Hz`. hs Significant wave height in :math:`m`. gamma Peakedness factor. """ # Pierson-Moskowitz parameters a_param_pm, b_param = pierson_moskowitz_params(fp, hs) # JONSWAP parameters sigma_a = 0.07 sigma_b = 0.09 sigma = np.piecewise(freq, condlist=[freq <= fp, freq > fp], funclist=[sigma_a, sigma_b]) alpha = np.exp(-1*((freq/fp - 1)/(np.sqrt(2)*sigma))**2) c_param = 1-0.287*np.log(gamma) a_param = a_param_pm * c_param * gamma**alpha return general_spectrum(a_param, b_param, freq)
[docs] def spread_cos2s( freq: Union[float, ArrayLike], directions: Union[float, ArrayLike], dm: float, fp: float, s_max: float, ) -> Union[float, np.ndarray]: """Calculate the Cosine-2s spreading function for the specified frequencies and wave directions. This is included as one example of a spreading function. Return is in units of :math:`1/degrees`. Parameters ---------- freq Wave frequencies in Hz. directions Wave directions relative to mean/wind direction in degrees. dm: float Mean wave direction in degrees. fp Peak frequency of the sea-state in :math:`Hz`. s_max The spreading parameter. Larger values corresponds to less spread. For fully developed seas a value of 10 is a good choice. """ freq = np.atleast_1d(freq) rdir = degrees_to_radians(directions-dm, False) pow = np.ones(len(freq)) * 5.0 pow[freq > fp] = -2.5 s_param = s_max * (freq/fp)**pow cs = 2**(2*s_param-1)/np.pi * (gamma(s_param+1))**2/gamma(2*s_param+1) return np.pi/180 * (cs * np.power.outer(np.cos(rdir/2), 2*s_param)).T
[docs] def general_spectrum( a_param: Union[float, ArrayLike], b_param: Union[float, ArrayLike], freq: Union[float, ArrayLike], ) -> Union[float, ArrayLike]: """Create a spectrum function. The general omni-directional spectrum formulation is :math:`S(f) = A f^(-5) e^(-B f^(-4))`. Return is in units of :math:`m^2/Hz`. Parameters ---------- a_param Parameter :math:`A` in the general spectrum equation. b_param Parameter :math:`B` in the general spectrum equation. freq Wave frequencies in Hz. """ spectrum = a_param * freq**(-5) * np.exp(-b_param * freq**(-4)) # if scalar, return scalar spectrum = spectrum.item() if (spectrum.size == 1) else spectrum return spectrum
[docs] def pierson_moskowitz_params(fp: float, hs: float) -> Union[float, ndarray]: """Return the two PM parameters for the general spectrum formulation. Parameters ---------- fp Peak frequency in :math:`Hz`. hs Significant wave height in :math:`m`. Returns ------- a_param Parameter :math:`A` in the general spectrum equation. b_param Parameter :math:`B` in the general spectrum equation. See Also -------- general_spectrum, """ b_param = (1.057*fp)**4 a_param = hs**2 / 4 * b_param return a_param, b_param