UQTk: Uncertainty Quantification Toolkit 3.1.5
|
Header for the model inference tools. More...
Go to the source code of this file.
Functions | |
void | infer_model (Array1D< Array2D< double >(*)(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *) > forwardFuncs, void *funcInfo, string likType, string priorType, double priora, double priorb, Array2D< double > &xdata, Array1D< Array1D< double > > &ydata, Array2D< double > &xgrid, int dataNoiseInference, Array1D< double > &datanoise_array, int pdim, int order, Array1D< int > &rndInd, Array2D< double > &fixIndNom, string pdfType, string pcType, int seed, int nmcmc, double mcmcgamma, bool optimflag, Array1D< double > &chstart, Array1D< double > &chsig, double likParam, int likParam_int, Array2D< double > &pgrid, Array2D< double > &pchain, int nburn, int nstep, Array1D< double > &mapparam, Array1D< double > &datavar_map, Array1D< double > &pmean_map, Array1D< double > &pvar_map, Array1D< double > &fmean_map, Array1D< double > &fvar_map, Array1D< double > &postave_datavar, Array1D< double > &p_postave_mean, Array1D< double > &p_postave_var, Array1D< double > &p_postvar_mean, Array2D< double > &f_postsam_mean, Array1D< double > &f_postave_mean, Array1D< double > &f_postave_var, Array1D< double > &f_postvar_mean, Array2D< double > ¶mPCcfs) |
Main function for inferring model parameters. | |
double | LogPosterior (Array1D< double > &m, void *mypost_void) |
Log-posterior function given a vector of parameters (chain state) and a void* set of auxiliary variables. | |
Header for the model inference tools.
void infer_model | ( | Array1D< Array2D< double >(* | forwardFuncs )(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *) >, |
void * | funcInfo, | ||
string | likType, | ||
string | priorType, | ||
double | priora, | ||
double | priorb, | ||
Array2D< double > & | xdata, | ||
Array1D< Array1D< double > > & | ydata, | ||
Array2D< double > & | xgrid, | ||
int | dataNoiseInference, | ||
Array1D< double > & | datanoise_array, | ||
int | pdim, | ||
int | order, | ||
Array1D< int > & | rndInd, | ||
Array2D< double > & | fixIndNom, | ||
string | pdfType, | ||
string | pcType, | ||
int | seed, | ||
int | nmcmc, | ||
double | mcmcgamma, | ||
bool | optimflag, | ||
Array1D< double > & | chstart, | ||
Array1D< double > & | chsig, | ||
double | likParam, | ||
int | likParam_int, | ||
Array2D< double > & | pgrid, | ||
Array2D< double > & | pchain, | ||
int | nburn, | ||
int | nstep, | ||
Array1D< double > & | mapparam, | ||
Array1D< double > & | datavar_map, | ||
Array1D< double > & | pmean_map, | ||
Array1D< double > & | pvar_map, | ||
Array1D< double > & | fmean_map, | ||
Array1D< double > & | fvar_map, | ||
Array1D< double > & | postave_datavar, | ||
Array1D< double > & | p_postave_mean, | ||
Array1D< double > & | p_postave_var, | ||
Array1D< double > & | p_postvar_mean, | ||
Array2D< double > & | f_postsam_mean, | ||
Array1D< double > & | f_postave_mean, | ||
Array1D< double > & | f_postave_var, | ||
Array1D< double > & | f_postvar_mean, | ||
Array2D< double > & | paramPCcfs ) |
Main function for inferring model parameters.
[in] | *forwardFuncs | : an array of y=f(p,x) functions that take np-by-pdim and nx-by-xdim input arrays and returns an np-by-nx output, see tools/func.h for several examples |
[in] | funcinfo | : auxiliary function-specific information (can be 0) |
[in] | likType | : likelihood type: options are 'full', 'marg', 'mvn', 'gausmarg', 'abc', 'abcm', 'classical', 'koh' (see UQTk Manual) |
[in] | priorType | : prior type: options are 'uniform', 'normal', 'inverse', etc ... (see UQTk Manual) |
[in] | priora,priorb | : prior parameters (todo: need to be made dimension-specific) for uniform, it is the range, for normal it is the moments |
[in] | xdata | : x-values of data, nx-by-xdim |
[in] | ydata | : y-values of data, nx-by-neach |
[in] | xgrid | : x-values where predictive moments are computed after the inference : can be the same as xdata |
[in] | dataNoiseInference | : indicator, data noise stdev is fixed(0), inferred (1), or log-inferred (2) |
[in] | datanoise_array | : data noise stdev array, if fixed, otherwise merely an MCMC starting point |
[in] | pdim | : model parameter dimensionality |
[in] | order | : order of output PC that is computed via NISP in the likelihood |
[in] | rndInd | : array of indices of parameters to be randomized |
[in] | fixIndNom | : array of indices and nominal values of parameters to be fixed |
[in] | pdfType | : type of PDF PC parameterization, options are 'pct','pci' and 'full' (see UQTk Manual) |
[in] | pcType | : type of PC for the PDF parameterization, options are all common PC types, e.g. 'HG','LU' |
[in] | seed | : integer seed for MCMC |
[in] | nmcmc | : number of MCMC steps to follow optimization; if 0, then only optimization is performed if optimflag is True |
[in] | mcmcgamma | : gamma (scaling) parameter for adaptive MCMC |
[in] | optimflag | : indicates if optimization is prepended to MCMC |
[in] | chstart | : initial chain state |
[in] | chsig | : initial non-adaptive, dimensionwise proposal jump size |
[in] | likParam,likParam_int | : likelihood parameters (currently, only needed for KDE-based likelihoods, 'full' and 'marg', to pass the KDE bandwidth and number of samples) |
[in] | pgrid | : parameter grid, if requested, to compute exact posterior (can be empty) |
[in] | nburn | : burn-in for MCMC to write to pchain |
[in] | nstep | : thinning of MCMC to write to pchain |
[in,out] | pchain | : thinned chain file with nburn and nstep applied, to be used for postprocessing : if given as non-empty array, the MCMC is skipped, and only postprocessing is performed |
[out] | mapparam | : MAP parameters |
[out] | datavar_map | : MAP value of data variances |
[out] | pmean_map,pvar_map | : MAP values of parameter means and variances |
[out] | fmean_map,fvar_map | : MAP values of function predition (at xgrid) means and variances |
[out] | postave_datavar | : posterior average of data variances |
[out] | p_postave_mean | : posterior average of parameter mean |
[out] | p_postave_var | : posterior average of parameter variance |
[out] | p_postvar_mean | : posterior variance of parameter mean |
[out] | f_postave_mean | : posterior average of function prediction mean |
[out] | f_postave_var | : posterior average of function prediction variance |
[out] | f_postvar_mean | : posterior variance of function prediction mean |
[out] | paramPCcfs | : each column is a vector of parameter PC coefficients corresponding to an MCMC sample from pchain the last column is the MAP value of parameter PC coefficients |
double LogPosterior | ( | Array1D< double > & | m, |
void * | mypost_void ) |
Log-posterior function given a vector of parameters (chain state) and a void* set of auxiliary variables.