logo

Expression of type Exp

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
expr = Exp(e, Mult(i, Add(Mult(two, pi, theta), pi)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\mathsf{e}^{\mathsf{i} \cdot \left(\left(2 \cdot \pi \cdot \theta\right) + \pi\right)}
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Literal
4Operationoperator: 11
operands: 5
5ExprTuple6, 7
6Literal
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 14
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14, 15
13Literal
14Literal
15Variable