logo

Expression of type ExprTuple

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, theta
from proveit.numbers import Abs, Add, Mult, pi, subtract, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(two, pi, theta)
expr = ExprTuple(Abs(subtract(Add(sub_expr1, pi), pi)), Abs(sub_expr1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left|\left(\left(2 \cdot \pi \cdot \theta\right) + \pi\right) - \pi\right|, \left|2 \cdot \pi \cdot \theta\right|\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operand: 6
2Operationoperator: 4
operand: 14
3ExprTuple6
4Literal
5ExprTuple14
6Operationoperator: 10
operands: 7
7ExprTuple8, 9
8Operationoperator: 10
operands: 11
9Operationoperator: 12
operand: 18
10Literal
11ExprTuple14, 18
12Literal
13ExprTuple18
14Operationoperator: 15
operands: 16
15Literal
16ExprTuple17, 18, 19
17Literal
18Literal
19Variable