logo

Expression of type Abs

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import theta
from proveit.numbers import Abs, Exp, Mult, e, i, pi, subtract, two, zero
In [2]:
# build up the expression from sub-expressions
expr = Abs(subtract(Exp(e, Mult(i, zero)), Exp(e, Mult(i, Mult(two, pi, theta)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left|\mathsf{e}^{\mathsf{i} \cdot 0} - \mathsf{e}^{\mathsf{i} \cdot \left(2 \cdot \pi \cdot \theta\right)}\right|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 14
operands: 8
7Operationoperator: 9
operand: 12
8ExprTuple17, 11
9Literal
10ExprTuple12
11Operationoperator: 22
operands: 13
12Operationoperator: 14
operands: 15
13ExprTuple20, 16
14Literal
15ExprTuple17, 18
16Literal
17Literal
18Operationoperator: 22
operands: 19
19ExprTuple20, 21
20Literal
21Operationoperator: 22
operands: 23
22Literal
23ExprTuple24, 25, 26
24Literal
25Literal
26Variable