logo

Expression of type ExprTuple

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, theta
from proveit.numbers import Exp, Mult, e, i, one, subtract
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(Exp(e, Mult(i, theta)), one))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}^{\mathsf{i} \cdot \theta} - 1\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operand: 12
6Literal
7ExprTuple10, 11
8Literal
9ExprTuple12
10Literal
11Operationoperator: 13
operands: 14
12Literal
13Literal
14ExprTuple15, 16
15Literal
16Variable