logo

Expression of type Abs

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import theta
from proveit.numbers import Abs, Add, Exp, Mult, Neg, e, i, one, pi, two
In [2]:
# build up the expression from sub-expressions
expr = Abs(Add(Neg(Exp(e, Mult(two, pi, i, theta))), one))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left|-\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta} + 1\right|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 8
operand: 10
7Literal
8Literal
9ExprTuple10
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14
13Literal
14Operationoperator: 15
operands: 16
15Literal
16ExprTuple17, 18, 19, 20
17Literal
18Literal
19Literal
20Variable