logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, ,  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.equality.equals_reversal
2instantiation3, 4, 5, ,  ⊢  
  : , : , :
3axiom  ⊢  
 proveit.logic.equality.equals_transitivity
4instantiation6, 10, 8, 11, 13, 15, 14, ,  ⊢  
  : , : , : , : , : , : , :
5instantiation7, 8, 9, 10, 11, 12, 13, 14, 15, ,  ⊢  
  : , : , : , : , : , :
6theorem  ⊢  
 proveit.numbers.multiplication.rightward_commutation
7theorem  ⊢  
 proveit.numbers.multiplication.association
8axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
9theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
10theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
11theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
12instantiation16  ⊢  
  : , :
13instantiation30, 31, 17  ⊢  
  : , : , :
14instantiation30, 31, 18  ⊢  
  : , : , :
15instantiation19, 20, 21  ⊢  
  : , :
16theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
17instantiation30, 28, 22  ⊢  
  : , : , :
18instantiation30, 28, 23  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
20instantiation30, 31, 24  ⊢  
  : , : , :
21instantiation25, 26, 27  ⊢  
  : , :
22assumption  ⊢  
23assumption  ⊢  
24instantiation30, 28, 29  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
26theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.i_is_complex
27instantiation30, 31, 32  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
29theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.e_is_real_pos
30theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
31theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
32assumption  ⊢