logo

Expression of type Lambda

from the theory of proveit.statistics

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, Omega, S
from proveit.logic import Difference, Equals, SubsetEq
from proveit.numbers import one, subtract
from proveit.statistics import Prob
In [2]:
# build up the expression from sub-expressions
expr = Lambda(S, Conditional(Equals(Prob(Difference(Omega, S)), subtract(one, Prob(S))), SubsetEq(S, Omega)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
S \mapsto \left\{\textrm{Pr}\left(\Omega - S\right) = \left(1 - \textrm{Pr}\left(S\right)\right) \textrm{ if } S \subseteq \Omega\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 24
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple24, 20
8Operationoperator: 22
operand: 13
9Operationoperator: 11
operands: 12
10ExprTuple13
11Literal
12ExprTuple14, 15
13Operationoperator: 16
operands: 17
14Literal
15Operationoperator: 18
operand: 21
16Literal
17ExprTuple20, 24
18Literal
19ExprTuple21
20Variable
21Operationoperator: 22
operand: 24
22Literal
23ExprTuple24
24Variable