logo

Expression of type Equals

from the theory of proveit.statistics

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Omega, x
from proveit.logic import And, Equals, Forall, InClass, InSet
from proveit.numbers import Sum, one
from proveit.statistics import Prob, SampleSpaces, prob_domain
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [x]
sub_expr2 = Prob(x)
expr = Equals(InClass(Omega, SampleSpaces), And(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(sub_expr2, prob_domain), domain = Omega), Equals(Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = Omega), one))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\Omega \underset{{\scriptscriptstyle c}}{\in} \textrm{SampleSpaces}\right) =  \\ \left(\left[\forall_{x \in \Omega}~\left(\textrm{Pr}\left(x\right) \in \left[0,1\right]\right)\right] \land \left(\left[\sum_{x \in \Omega}~\textrm{Pr}\left(x\right)\right] = 1\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 13
operands: 1
1ExprTuple2, 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple36, 8
6Literal
7ExprTuple9, 10
8Literal
9Operationoperator: 11
operand: 15
10Operationoperator: 13
operands: 14
11Literal
12ExprTuple15
13Literal
14ExprTuple16, 34
15Lambdaparameter: 35
body: 17
16Operationoperator: 18
operand: 21
17Conditionalvalue: 20
condition: 26
18Literal
19ExprTuple21
20Operationoperator: 31
operands: 22
21Lambdaparameter: 35
body: 23
22ExprTuple25, 24
23Conditionalvalue: 25
condition: 26
24Operationoperator: 27
operands: 28
25Operationoperator: 29
operand: 35
26Operationoperator: 31
operands: 32
27Literal
28ExprTuple33, 34
29Literal
30ExprTuple35
31Literal
32ExprTuple35, 36
33Literal
34Literal
35Variable
36Variable