logo

Expression of type Iff

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A
from proveit.core_expr_types import B_1_to_m
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals, Iff
from proveit.physics.quantum.circuits import QcircuitEquiv, circuit_compressed_inputAm, circuit_expanded_inputBm
In [2]:
# build up the expression from sub-expressions
expr = Iff(QcircuitEquiv(circuit_compressed_inputAm, circuit_expanded_inputBm), Equals(A, TensorProd(B_1_to_m)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{A} & { /^{m} } \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{B_{1}} & \qw \\
\qin{B_{2}} & \qw \\
\qin{\vdots} & \qw \\
\qin{B_{m}} & \qw
} \end{array}\right)\right) \Leftrightarrow \left(A = \left(B_{1} {\otimes}  B_{2} {\otimes}  \ldots {\otimes}  B_{m}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple39, 11
9Operationoperator: 13
operand: 17
10Operationoperator: 13
operand: 18
11Operationoperator: 15
operands: 16
12ExprTuple17
13Literal
14ExprTuple18
15Literal
16ExprTuple19
17ExprTuple20
18ExprTuple21
19ExprRangelambda_map: 22
start_index: 40
end_index: 41
20ExprRangelambda_map: 23
start_index: 40
end_index: 41
21ExprRangelambda_map: 24
start_index: 40
end_index: 41
22Lambdaparameter: 42
body: 32
23Lambdaparameter: 42
body: 25
24Lambdaparameter: 42
body: 26
25Operationoperator: 27
operands: 28
26Operationoperator: 33
operands: 29
27Literal
28NamedExprselement: 30
targets: 31
29NamedExprsstate: 32
30Operationoperator: 33
operands: 34
31Operationoperator: 35
operands: 36
32IndexedVarvariable: 37
index: 42
33Literal
34NamedExprsstate: 39
part: 42
35Literal
36ExprTuple40, 41
37Variable
38ExprTuple42
39Variable
40Literal
41Variable
42Variable