logo

Expression of type Implies

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.core_expr_types.expr_arrays import A11_to_Akl_varray, B11_to_Bkl_varray
from proveit.logic import Implies, NotEquals
from proveit.physics.quantum.circuits import circuit_Akl, circuit_Bkl
In [2]:
# build up the expression from sub-expressions
expr = Implies(NotEquals(A11_to_Akl_varray, B11_to_Bkl_varray), NotEquals(circuit_Akl, circuit_Bkl)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\begin{array}{cccc} 
 A_{1, 1} & A_{2, 1} & \cdots & A_{k, 1} \\
A_{1, 2} & A_{2, 2} & \cdots & A_{k, 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1, l} & A_{2, l} & \cdots & A_{k, l} \\
\end{array}
\right) \neq \left(\begin{array}{cccc} 
 B_{1, 1} & B_{2, 1} & \cdots & B_{k, 1} \\
B_{1, 2} & B_{2, 2} & \cdots & B_{k, 2} \\
\vdots & \vdots & \ddots & \vdots \\
B_{1, l} & B_{2, l} & \cdots & B_{k, l} \\
\end{array}
\right)\right) \Rightarrow  \\ \left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{A_{1, 1}} \qwx[1] & \gate{A_{2, 1}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{k, 1}} \qwx[1] & \qw \\
& \gate{A_{1, 2}} \qwx[1] & \gate{A_{2, 2}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{k, 2}} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{A_{1, l}} & \gate{A_{2, l}} & \gate{\cdots} & \gate{A_{k, l}} & \qw
} \end{array}\right) \neq \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{B_{1, 1}} \qwx[1] & \gate{B_{2, 1}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{k, 1}} \qwx[1] & \qw \\
& \gate{B_{1, 2}} \qwx[1] & \gate{B_{2, 2}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{k, 2}} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{B_{1, l}} & \gate{B_{2, l}} & \gate{\cdots} & \gate{B_{k, l}} & \qw
} \end{array}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple10, 12
6Literal
7ExprTuple8, 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13
11Literal
12ExprTuple14
13ExprRangelambda_map: 15
start_index: 25
end_index: 17
14ExprRangelambda_map: 16
start_index: 25
end_index: 17
15Lambdaparameter: 33
body: 18
16Lambdaparameter: 33
body: 20
17Variable
18ExprTuple21
19ExprTuple33
20ExprTuple22
21ExprRangelambda_map: 23
start_index: 25
end_index: 26
22ExprRangelambda_map: 24
start_index: 25
end_index: 26
23Lambdaparameter: 34
body: 27
24Lambdaparameter: 34
body: 29
25Literal
26Variable
27IndexedVarvariable: 30
indices: 32
28ExprTuple34
29IndexedVarvariable: 31
indices: 32
30Variable
31Variable
32ExprTuple33, 34
33Variable
34Variable