logo

Expression of type Lambda

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import IndexedVar, Lambda, U, Variable, m
from proveit.linear_algebra import Unitary
from proveit.logic import InSet
from proveit.numbers import Exp, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Lambda(sub_expr1, InSet(IndexedVar(U, sub_expr1), Unitary(Exp(two, m))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
{_{-}a} \mapsto \left(U_{{_{-}a}} \in \textrm{U}\left(2^{m}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 10
body: 1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4IndexedVarvariable: 6
index: 10
5Operationoperator: 8
operand: 11
6Variable
7ExprTuple10
8Literal
9ExprTuple11
10Variable
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Literal
15Variable