logo

Expression of type Lambda

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import IndexedVar, Lambda, N, Variable, n
from proveit.logic import Equals
from proveit.numbers import Add, one, subtract
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Lambda(sub_expr1, Equals(IndexedVar(N, sub_expr1), Add(IndexedVar(N, subtract(sub_expr1, one)), IndexedVar(n, sub_expr1))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
{_{-}a} \mapsto \left(N_{{_{-}a}} = \left(N_{{_{-}a} - 1} + n_{{_{-}a}}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 16
body: 1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4IndexedVarvariable: 9
index: 16
5Operationoperator: 14
operands: 6
6ExprTuple7, 8
7IndexedVarvariable: 9
index: 13
8IndexedVarvariable: 11
index: 16
9Variable
10ExprTuple13
11Variable
12ExprTuple16
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16, 17
16Variable
17Operationoperator: 18
operand: 20
18Literal
19ExprTuple20
20Literal