logo

Expression of type Disjoint

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import IndexedVar, T, Variable, k
from proveit.logic import Disjoint
from proveit.numbers import Interval, one
In [2]:
# build up the expression from sub-expressions
expr = Disjoint(IndexedVar(T, [Variable("_b", latex_format = r"{_{-}b}"), Variable("_a", latex_format = r"{_{-}a}")]), Interval(one, k))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\textrm{disjoint}\left(T_{{_{-}b}, {_{-}a}}, \{1~\ldotp \ldotp~k\}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3IndexedVarvariable: 5
indices: 6
4Operationoperator: 7
operands: 8
5Variable
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Variable
10Variable
11Literal
12Variable