logo

Expression of type Lambda

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Lambda
from proveit.logic import Equals
from proveit.physics.quantum.circuits import Output
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A, B], Equals(Equals(Output(state = A), Output(state = B)), Equals(A, B)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A, B\right) \mapsto \left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{A} 
} \end{array} = \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{B} 
} \end{array}\right) = \left(A = B\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 7
body: 1
1Operationoperator: 6
operands: 2
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple13, 14
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10NamedExprsstate: 13
11Literal
12NamedExprsstate: 14
13Variable
14Variable