logo

Expression of type Equals

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import B, alpha
from proveit.core_expr_types import A_1_to_l, C_1_to_n
from proveit.linear_algebra import ScalarMult
from proveit.logic import Equals
from proveit.physics.quantum import Qmult
In [2]:
# build up the expression from sub-expressions
expr = Equals(Qmult(A_1_to_l, ScalarMult(alpha, B), C_1_to_n), Qmult(A_1_to_l, alpha, B, C_1_to_n)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(A_{1} \thinspace  A_{2} \thinspace  \ldots \thinspace  A_{l} \thinspace \left(\alpha \cdot B\right)\thinspace C_{1} \thinspace  C_{2} \thinspace  \ldots \thinspace  C_{n}\right) =  \\ \left(A_{1} \thinspace  A_{2} \thinspace  \ldots \thinspace  A_{l} \thinspace \alpha \thinspace B\thinspace C_{1} \thinspace  C_{2} \thinspace  \ldots \thinspace  C_{n}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple9, 8, 10
6Literal
7ExprTuple9, 18, 19, 10
8Operationoperator: 11
operands: 12
9ExprRangelambda_map: 13
start_index: 16
end_index: 14
10ExprRangelambda_map: 15
start_index: 16
end_index: 17
11Literal
12ExprTuple18, 19
13Lambdaparameter: 25
body: 20
14Variable
15Lambdaparameter: 25
body: 21
16Literal
17Variable
18Variable
19Variable
20IndexedVarvariable: 22
index: 25
21IndexedVarvariable: 23
index: 25
22Variable
23Variable
24ExprTuple25
25Variable