logo

Expression of type Lambda

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, U, n
from proveit.logic import CartExp, InSet
from proveit.numbers import Complex
from proveit.physics.quantum import Qmult, var_ket_psi
In [2]:
# build up the expression from sub-expressions
sub_expr1 = CartExp(Complex, n)
expr = Lambda(var_ket_psi, Conditional(InSet(Qmult(U, var_ket_psi), sub_expr1), InSet(var_ket_psi, sub_expr1)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\lvert \psi \rangle \mapsto \left\{\left(U \thinspace \lvert \psi \rangle\right) \in \mathbb{C}^{n} \textrm{ if } \lvert \psi \rangle \in \mathbb{C}^{n}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 15
body: 2
1ExprTuple15
2Conditionalvalue: 3
condition: 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple15, 9
8Operationoperator: 10
operands: 11
9Operationoperator: 12
operands: 13
10Literal
11ExprTuple14, 15
12Literal
13ExprTuple16, 17
14Variable
15Variable
16Literal
17Variable