\forall_{i \in \mathbb{N}^+, m \in \mathbb{N}, n \in \mathbb{N}}~\left[\forall_{A_{1}, A_{2}, \ldots, A_{m}, B_{1}, B_{2}, \ldots, B_{i}, C_{1}, C_{2}, \ldots, C_{n}}~\left(\begin{array}{c} \begin{array}{l} \left(\left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace \left(B_{1} + B_{2} + \ldots + B_{i}\right)\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right) \underset{{\scriptscriptstyle c}}{\in} \mathcal{Q^*}\right) \Rightarrow \\ \left(\begin{array}{c} \begin{array}{l} \left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace \left(B_{1} + B_{2} + \ldots + B_{i}\right)\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right) = \\ \left(\left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace B_{1}\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right) + \left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace B_{2}\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right) + \ldots + \left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace B_{i}\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right)\right) \end{array} \end{array}\right) \end{array} \end{array}\right)\right]