logo

Expression of type Conditional

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, M, m, n
from proveit.linear_algebra import MatrixSpace
from proveit.logic import InClass, InSet
from proveit.numbers import Complex
from proveit.physics.quantum import Qmult, QmultCodomain
In [2]:
# build up the expression from sub-expressions
expr = Conditional(InClass(Qmult(M), QmultCodomain), InSet(M, MatrixSpace(field = Complex, rows = m, columns = n)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\left[M\right] \underset{{\scriptscriptstyle c}}{\in} \mathcal{Q^*} \textrm{ if } M \in \mathbb{C}^{m \times n}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 8
5Literal
6ExprTuple14, 9
7Operationoperator: 10
operand: 14
8Literal
9Operationoperator: 12
operands: 13
10Literal
11ExprTuple14
12Literal
13NamedExprsfield: 15
rows: 16
columns: 17
14Variable
15Literal
16Variable
17Variable