logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.core_expr_types import A_1_to_l, C_1_to_n
from proveit.physics.quantum import Qmult, QmultCodomain
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Qmult(A_1_to_l, C_1_to_n), QmultCodomain)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A_{1} \thinspace  A_{2} \thinspace  \ldots \thinspace  A_{l}\thinspace C_{1} \thinspace  C_{2} \thinspace  \ldots \thinspace  C_{n}, \mathcal{Q^*}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Literal
3Literal
4ExprTuple5, 6
5ExprRangelambda_map: 7
start_index: 10
end_index: 8
6ExprRangelambda_map: 9
start_index: 10
end_index: 11
7Lambdaparameter: 17
body: 12
8Variable
9Lambdaparameter: 17
body: 13
10Literal
11Variable
12IndexedVarvariable: 14
index: 17
13IndexedVarvariable: 15
index: 17
14Variable
15Variable
16ExprTuple17
17Variable