logo

Expression of type Lambda

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, Lambda
from proveit.linear_algebra import Hspace
from proveit.logic import InClass, InSet
from proveit.physics.quantum import Qmult, QmultCodomain, var_ket_psi
In [2]:
# build up the expression from sub-expressions
expr = Lambda(var_ket_psi, Conditional(InClass(Qmult(A, var_ket_psi), QmultCodomain), InSet(var_ket_psi, Hspace)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\lvert \psi \rangle \mapsto \left\{\left(A \thinspace \lvert \psi \rangle\right) \underset{{\scriptscriptstyle c}}{\in} \mathcal{Q^*} \textrm{ if } \lvert \psi \rangle \in \mathcal{H}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 15
body: 2
1ExprTuple15
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple15, 11
9Operationoperator: 12
operands: 13
10Literal
11Variable
12Literal
13ExprTuple14, 15
14Variable
15Variable