\forall_{A_{1}, A_{2}, \ldots, A_{m}, C_{1}, C_{2}, \ldots, C_{n}, f, Q}~\left(\begin{array}{c} \begin{array}{l} \left(\left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right]\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right) \underset{{\scriptscriptstyle c}}{\in} \mathcal{Q^*}\right) \Rightarrow \\ \left(\begin{array}{c} \begin{array}{l} \left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right]\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right) \\ = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(A_{1} \thinspace A_{2} \thinspace \ldots \thinspace A_{m} \thinspace f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\thinspace C_{1} \thinspace C_{2} \thinspace \ldots \thinspace C_{n}\right)\right] \end{array} \end{array}\right) \end{array} \end{array}\right)