logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, j
from proveit.physics.quantum.algebra import n_bit_interval
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(j, n_bit_interval)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(j, \{0~\ldotp \ldotp~2^{n} - 1\}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Variable
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Literal
6Operationoperator: 7
operands: 8
7Literal
8ExprTuple9, 10
9Operationoperator: 11
operands: 12
10Operationoperator: 13
operand: 17
11Literal
12ExprTuple15, 16
13Literal
14ExprTuple17
15Literal
16Variable
17Literal