logo

Expression of type Lambda

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, Lambda, X, c
from proveit.linear_algebra import Hspace, LinMap
from proveit.logic import InSet
from proveit.physics.quantum import Qmult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = LinMap(Hspace, X)
expr = Lambda(A, Conditional(InSet(Qmult(c, A), sub_expr1), InSet(Qmult(A), sub_expr1)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
A \mapsto \left\{\left(c \thinspace A\right) \in \mathcal{L}\left(\mathcal{H}, X\right) \textrm{ if } \left[A\right] \in \mathcal{L}\left(\mathcal{H}, X\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 16
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 5
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple7, 9
5Literal
6ExprTuple8, 9
7Operationoperator: 11
operands: 10
8Operationoperator: 11
operand: 16
9Operationoperator: 13
operands: 14
10ExprTuple15, 16
11Literal
12ExprTuple16
13Literal
14ExprTuple17, 18
15Variable
16Variable
17Variable
18Variable