logo

Expression of type Lambda

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, Lambda, X
from proveit.linear_algebra import Hspace, LinMap
from proveit.logic import InSet
from proveit.physics.quantum import Qmult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = LinMap(Hspace, X)
expr = Lambda(A, Conditional(InSet(Qmult(A), sub_expr1), InSet(A, sub_expr1)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
A \mapsto \left\{\left[A\right] \in \mathcal{L}\left(\mathcal{H}, X\right) \textrm{ if } A \in \mathcal{L}\left(\mathcal{H}, X\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 13
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 5
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple7, 8
5Literal
6ExprTuple13, 8
7Operationoperator: 9
operand: 13
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13
11Literal
12ExprTuple14, 15
13Variable
14Variable
15Variable