logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Lambda, j, k, n
from proveit.logic import Equals, Forall
from proveit.physics.quantum import NumKet
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(n, Forall(instance_param_or_params = [j, k], instance_expr = Equals(NumKet(j, n), NumKet(k, n)), condition = Equals(j, k))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(n \mapsto \left[\forall_{j, k~|~j = k}~\left(\lvert j \rangle_{n} = \lvert k \rangle_{n}\right)\right]\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 20
body: 3
2ExprTuple20
3Operationoperator: 4
operand: 6
4Literal
5ExprTuple6
6Lambdaparameters: 12
body: 7
7Conditionalvalue: 8
condition: 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 14
11Literal
12ExprTuple18, 19
13Operationoperator: 16
operands: 15
14Operationoperator: 16
operands: 17
15ExprTuple18, 20
16Literal
17ExprTuple19, 20
18Variable
19Variable
20Variable