logo

Expression of type Conditional

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, X, c
from proveit.linear_algebra import Hspace, LinMap
from proveit.logic import InSet
from proveit.physics.quantum import Qmult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = LinMap(Hspace, X)
expr = Conditional(InSet(Qmult(A, c), sub_expr1), InSet(Qmult(A), sub_expr1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\left(A \thinspace c\right) \in \mathcal{L}\left(\mathcal{H}, X\right) \textrm{ if } \left[A\right] \in \mathcal{L}\left(\mathcal{H}, X\right)\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 8
4Literal
5ExprTuple7, 8
6Operationoperator: 10
operands: 9
7Operationoperator: 10
operand: 15
8Operationoperator: 12
operands: 13
9ExprTuple15, 14
10Literal
11ExprTuple15
12Literal
13ExprTuple16, 17
14Variable
15Variable
16Variable
17Variable