logo

Expression of type Conditional

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, i, n
from proveit.core_expr_types import x_i
from proveit.logic import InSet
from proveit.numbers import Interval, one
from proveit.physics.quantum import Bra, Ket, Qmult
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Qmult(Ket(x_i), Bra(x_i)), InSet(i, Interval(one, n)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\lvert x_{i} \rangle \thinspace \langle x_{i} \rvert \textrm{ if } i \in \{1~\ldotp \ldotp~n\}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 8
5Literal
6ExprTuple20, 9
7Operationoperator: 10
operand: 15
8Operationoperator: 11
operand: 15
9Operationoperator: 13
operands: 14
10Literal
11Literal
12ExprTuple15
13Literal
14ExprTuple16, 17
15IndexedVarvariable: 18
index: 20
16Literal
17Variable
18Variable
19ExprTuple20
20Variable